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Abstract: The recently publicly released Human Connectome Project (HCP) grayordinate-based fMRI
data not only has high spatial and temporal resolution, but also offers group-corresponding fMRI sig-
nals across a large population for the first time in the brain imaging field, thus significantly facilitating
mapping the functional brain architecture with much higher resolution and in a group-wise fashion. In
this article, we adopt the HCP grayordinate task-based fMRI (tfMRI) data to systematically identify
and characterize task-based heterogeneous functional regions (THFRs) on cortical surface, i.e., the
regions that are activated during multiple tasks conditions and contribute to multiple task-evoked sys-
tems during a specific task performance, and to assess the spatial patterns of identified THFRs on cort-
ical gyri and sulci by applying a computational framework of sparse representations of grayordinate
brain tfMRI signals. Experimental results demonstrate that both consistent task-evoked networks and
intrinsic connectivity networks across all subjects and tasks in HCP grayordinate data are effectively
and robustly reconstructed via the proposed sparse representation framework. Moreover, it is found
that there are relatively consistent THFRs locating at bilateral parietal lobe, frontal lobe, and visual
association cortices across all subjects and tasks. Particularly, those identified THFRs locate signifi-
cantly more on gyral regions than on sulcal regions. These results based on sparse representation of
HCP grayordinate data reveal novel functional architecture of cortical gyri and sulci, and might pro-
vide a foundation to better understand functional mechanisms of the human cerebral cortex in the
future. Hum Brain Mapp 36:5301–5319, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Studying human brain function using in-vivo functional
neuroimaging techniques such as functional magnetic res-
onance imaging (fMRI) [Friston, 2009; Logothetis, 2008]
has received significant interest in the brain mapping field.
Specifically, task-based fMRI (tfMRI) has been widely
adopted to identify brain regions that are functionally
involved in a specific task performance [Friston, 2009; Log-
othetis 2008]. To advance the understanding of functional
localizations and interactions within the human brain
based on fMRI data, there have been increasing efforts in
acquiring and processing fMRI data with higher spatial/
temporal resolution and correspondence across subjects
and populations to better characterize the regularity and
variability of human brain function [Van Essen et al.,
2013]. One of such efforts is the recently publicly released
Human Connectome Project (HCP) grayordinate-based
fMRI data [Barch et al., 2013; Glasser et al., 2013; Smith
et al., 2013; Van Essen et al., 2013]. The HCP grayordinate
data models the gray matter as combined cortical surface
vertices and subcortical voxels across subjects in the stand-
ard MNI152 space [Glasser et al., 2013; Smith et al., 2013].
The HCP fMRI (including tfMRI and resting state fMRI)
data in the standard grayordinate space not only has both
much higher spatial and temporal resolution, but also
offers group-corresponding fMRI signals across a large
population for the first time in the brain imaging field. In
short, the HCP grayordinate fMRI data significantly facili-
tates the mapping of functional brain architecture with
much higher resolution and in a group-wise fashion, with-
out the need to average signals within brain regions and
across subjects [Mikl et al., 2008; Yue et al., 2010].

Based on tfMRI data, various studies [e.g., Bullmore and
Sporns, 2009; Dosenbach et al., 2006; Fox et al., 2005; Huet-
tel et al., 2004; Lv et al., 2015a,b] have demonstrated that
there exist multiple concurrent functional networks that
are spatially distributed across brain regions and are
involved and interacting with each other. This phenom-
enon is in agreement with studies in the neuroscience field
which have been widely reported and argued that there
are certain brain regions and networks that exhibit strong
functional heterogeneity and diversity [Anderson et al.,
2013; Duncan, 2010; Fedorenko et al., 2013; Gazzaniga,
2004; Kanwisher, 2010; Pessoa, 2012]. That is, a brain
region might be involved in multiple functional processes
simultaneously, and a functional network might recruit
heterogeneous brain regions. For instances, it was argued
that “neural basis of emotion and cognition should be
viewed as governed less by properties that are intrinsic to
specific sites and more by interactions among multiple
brain regions” [Pessoa, 2012] and that “areas of the brain
that have been associated with language processing appear
to be recruited across other cognitive domains” [Gazza-
niga, 2004]. In short, identifying and characterizing such
meaningful task-based heterogeneous functional regions
(THFRs) on cerebral cortex, i.e., the cortical regions that

are activated during multiple tasks conditions and contrib-
ute to multiple task-evoked systems during a specific task
performance, could be important to understanding the
functional architecture of human cerebral cortex. However,
those meaningful THFRs with complex temporal patterns
due to the complex composition of involved multiple func-
tional networks/processes might have been underesti-
mated by traditional approaches which merely consider
individual tfMRI signals based on model-driven subtrac-
tion procedures [Lv et al., 2015a,b).

The highly convoluted cortical folding, which is com-
posed of convex gyri and concave sulci, is one of the most
prominent features of human cerebral cortex [Barron, 1950;
Rakic, 1988; Welker, 1990]. In recent years, there has been
increasing interest in human brain mapping from both
micro- and macroscale to investigate the possible struc-
tural/functional differences between gyri and sulci, and
several interesting findings have been reported [Chen
et al., 2013; Deng et al., 2014; Nie et al., 2012; Takahashi
et al., 2012; Zeng et al., 2015; Zhang et al., 2014]. For
instances, a recent micro-scale study [Zeng et al., 2015]
based on recently released Allen Mouse Brain Atlas dem-
onstrated that the cerebellum gyri and sulci of rodent
brains are significantly different in both axonal connectiv-
ity and gene expression patterns. For macro-scale data
analysis, our recent studies [Chen et al., 2013; Nie et al.,
2012] demonstrated that the termination of streamline
fibers derived from diffusion magnetic resonance imaging
(dMRI) (e.g., diffusion tensor imaging (DTI) and high
angular resolution diffusion imaging (HARDI)) concentrate
on gyrus in human, chimpanzee, and macaque brains.
This phenomenon was also observed in another analysis
on human fetus brain [Takahashi et al., 2012]. Another
recent study [Zhang et al., 2014] identified and character-
ized the U-shapes of streamline fibers derived from dMRI
(e.g., DTI, HARDI, and diffusion spectrum imaging (DSI)),
and reported that most of the U-shaped streamline fibers
connect neighboring cortical gyri and course along sulci in
human, chimpanzee, and macaque brains. Moreover,
inspired by those structural connectivity findings, our
recent study [Deng et al., 2014] demonstrated that the
functional connectivity is strong between gyral-gyral
regions, weak between sulcal-sulcal regions, and moderate
between gyral-sulcal regions based on resting state fMRI
data. However, the functional brain characteristics (e.g.,
the possible distribution difference of THFRs in this study)
of cortical gyral/sulcal regions during a specific task per-
formance based on tfMRI data are largely unknown.

Motivated by the above-mentioned reasons and based
on the high-quality HCP grayordinate tfMRI data, this
study aims to identify and characterize the meaningful
THFRs on cortical surface during a specific task perform-
ance, and to assess the possible distribution difference of
identified THFRs on cortical gyral and sulcal regions. The
recently publicly released HCP tfMRI data in the standard
grayordinate space [Barch et al., 2013; Glasser et al., 2013;
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Van Essen et al., 2013] is particularly suitable for this
study due to the following three reasons. (1) It is well
demonstrated [e.g., Glasser et al., 2013; Smith et al., 2013;
Van Essen et al., 2013] that it is of great importance to ana-
lyze cortical neuroimaging data with surface constraint
information since the convoluted cortical sheet and its
geometry information is better represented in two-
dimensional (2D) surface space than in commonly adopted
three-dimensional (3D) volume space. (2) The HCP grayor-
dinate tfMRI data can sufficiently differentiate gyral/sulcal
regions and relatively reliably map the tfMRI time series
on cortical gyral and sulcal regions. While for the com-
monly used tfMRI data in 3D volume space, the possible
functionally distinct regions across gyral blades or sulcal
banks are only separated by a few voxels (millimeters). It
is possible that the tfMRI time series from functionally dis-
tinct gyral/sulcal regions are mixed when performing 3D
volumetric smoothing processing and thus inaccurate for
succeeding analysis [Glasser et al., 2013]. (3) The HCP
grayordinate tfMRI data has both high spatial and tempo-
ral resolution than the commonly used tfMRI data, and
the spatial correspondence of the standard grayordinate
tfMRI data is relatively more precise than aligned 3D vol-
ume data across different subjects [Glasser et al., 2013],
and the associated tfMRI signals of grayordinates also
have relatively precise correspondence across subjects,
which is suitable for cross-subject comparison and group-
wise analysis. In short, using HCP grayordinate-based
tfMRI data will significantly benefit us to identify THFRs
reliably and assess their spatial patterns on cortical gyri
and sulci accurately in this study.

In general, our contributions in this work are threefold:
(1) We identify and characterize meaningful THFRs via
our recent computational framework [Lv et al., 2015a,b] of
sparse representations of whole-brain tfMRI signals via an
effective online dictionary learning algorithm [Mairal
et al., 2010]. The rationales of adopting sparse representa-
tion of whole-brain tfMRI signals to identify meaningful
functional networks are explained in two fold. First, based
on the argument that a brain region might be involved in
multiple functional processes simultaneously [Anderson
et al., 2013; Duncan, 2010; Fedorenko et al., 2013; Gazza-
niga, 2004; Kanwisher, 2010; Pessoa, 2012], its tfMRI blood
oxygen level dependent (BOLD) signal could be composed
of various components (functional networks) simultane-
ously. Second, given that dictionary learning and sparse
representation approaches have been successfully adopted
in machine learning and pattern recognition fields to both
represent signals accurately and compactly and extract
meaningful patterns effectively [e.g., Wright et al., 2010],
there have been several recent successes of adopting dic-
tionary learning and sparse representation for brain fMRI
signal analysis and activation/network detection under
the premise that each fMRI signal’s components are sparse
and linearly neural integrated [e.g., Abolghasemi et al.,
2015; Lee et al., 2011; Lv et al., 2015a,b; Oikonomou et al.,

2012]. Specifically, our recent works [Lv et al., 2015a,b]
successfully performed sparse representation of whole-
brain fMRI signals at voxel scale to infer a comprehensive
collection of functional networks in the whole brain con-
currently, to characterize those functional networks via
spatial and temporal patterns, to assess the composition
contributions of those functional networks to whole-brain
fMRI signals, and to measure the spatial overlap patterns
among functional networks. A critical difference between
the dictionary learning/sparse representation approach
and other decomposition approaches (e.g., independent
component analysis (ICA) [McKeown et al., 1998]) is that
the sparse representation does not explicitly assume the
independence of fMRI time series among different func-
tional components, while ICA does. It is more appropriate
to explore the THFRs with concurrent functional proc-
esses/networks based on the sparse representation-based
components in this study. (2) We apply our computational
framework on the recently publicly released HCP grayor-
dinate tfMRI data [Barch et al., 2013; Glasser et al., 2013;
Van Essen et al., 2013], making the results relatively reli-
able, reproducible, and comparable for other studies. (3) It
is the first time (as far as we know) to assess the spatial
patterns of task-based heterogeneous functional regions on
cortical gyri and sulci, the results of which could provide
a foundation for future exploration of functional architec-
ture of the human cerebral cortex.

The manuscript is organized as follows. We first briefly
describe HCP grayordinate-based tfMRI data and the asso-
ciated minimal preprocessing pipelines [Glasser et al.,
2013]. In the methods, we first identify a comprehensive
collection of functional networks of each subject during
specific task performances via the recently developed com-
putational framework [Lv et al., 2015a,b] of sparse repre-
sentations of grayordinate brain tfMRI signals. Then, we
identify and quantitatively characterize the meaningful
task-evoked networks and intrinsic connectivity networks
in spatial and/or temporal domains. Finally, we identify
the task-based heterogeneous functional regions (THFRs)
involved in multiple functional networks, and assess their
spatial patterns on cortical gyri/sulci. Experimental results
and discussion and conclusion are also presented.

MATERIALS AND METHODS

“Grayordinate” Data Acquisition and

Preprocessing

We adopt the high-quality task-based fMRI (tfMRI) data
from the Human Connectome Project (HCP) (first quarter
(Q1) release) [Barch et al., 2013; Van Essen et al., 2013] in
this study. HCP provides publicly available and easy-to-
use multimodality MRI neuroimaging datasets for multi-
modal analysis of brain structure, connectivity, and func-
tion, as well as comparisons across subjects. Specifically,
the HCP tfMRI datasets include seven different task
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paradigms (emotion, gambling, language, motor, rela-
tional, social, and working memory) which are adopted or
designed to identify core functional nodes across a wide
range of cerebral cortex, thus can be viewed as a compre-
hensive and systematic mapping of core functional nodes
and functional networks across subjects [Barch et al.,
2013]. The detailed designs of the seven task paradigms
are referred to in Barch et al. [2013].

There are 68 subjects in the Q1 release of HCP tfMRI
datasets [Barch et al., 2013; Van Essen et al., 2013]. The
acquisition parameters of tfMRI data are as follows: 90 3

104 matrix, 220 mm FOV, 72 slices, TR 5 0.72 s, TE 5 33.1
ms, flip angle 5 528, BW 5 2,290 Hz/Px, in-plane
FOV 5 208 3 180 mm, 2.0 mm isotropic voxels [Barch
et al., 2013]. We adopt the publicly released preprocessed
tfMRI data after the minimal preprocessing pipelines
which are especially defined for high spatial and temporal
resolution of HCP datasets [Glasser et al., 2013]. The mini-
mal preprocessing pipelines mainly include spatial arti-
facts and distortions removal, cortical surfaces generation,
within-subject cross-modal registration, cross-subject regis-
tration to standard volume and surface spaces, and gener-
ation of a CIFTI format of preprocessed data in the
standard grayordinate space [Glasser et al., 2013]. In brief,
gray matter is modeled as combined cortical surface verti-
ces and subcortical voxels, and the term “grayordinates” is
adopted to describe the spatial dimension of such com-
bined coordinate system. The standard grayordinate space
means that the cortical surface mesh and subcortical vol-
ume parcels are both in the MNI standard space (Fig. 1a).

There are 91,282 maximally aligned grayordinates in total
(including the gray matter sampled at about 60 k surface
vertices in the standard 2 mm average vertex spacing on
the cortical surface and about 30 k standard 2 mm voxels
in subcortical regions) across all subjects and data modal-
ities [Glasser et al., 2013]. The grayordinate-based tfMRI
data is represented as a 2D matrix in CIFTI format, in
which one dimension represents the standard grayordi-
nates (spatial information) which have correspondence
across subjects and the other dimension represents the
tfMRI time series (Fig. 1b) [Barch et al., 2013; Glasser et al.,
2013].

Sparse Representation of Grayordinate-Based

Whole-Brain TfMRI Signals

We perform dictionary learning and sparse representa-
tion of grayordinate-based whole-brain tfMRI data to
obtain a comprehensive collection of dictionary compo-
nents (functional networks) in the whole brain for each
subject in each task data via our recently developed com-
putational framework [Lv et al., 2015a,b]. All variables
used in this section are summarized in Supporting Infor-
mation Table I. As illustrated in Figure 1, for each subject
in each task data, first, we extract tfMRI signals of whole-
brain grayordinates (Fig. 1a). After normalizing to zero
mean and standard deviation of 1, all tfMRI signals are
aggregated into a 2D signal matrix X5 x1; :::; xn½ � 2 Rt3n

(Fig. 1b), where t is the tfMRI time points and n columns
are n tfMRI signals extracted from n grayordinates. Then

Figure 1.

Sparse representation of grayordinate-based whole-brain tfMRI

signals. (a) The cortical surface of an example subject in the

MNI152 standard grayordinate space. Four example cortical ver-

tices (grayordinates) are highlighted by four different colors

(red, blue, green and orange). (b) The grayordinate-based tfMRI

data of the subject in (a). It is represented as a 2D matrix X, in

which each row represents the standard grayordinates (spatial

information) and each column represents the tfMRI time series.

Four corresponding tfMRI signals of the four example grayordi-

nates in (a) are represented as straight lines by the same color.

(c): Sparse representation of X as dictionary D 3 sparse coeffi-

cient weight matrix a. (d)–(f): Illustrations of D and a. The blue

bars in (d) show dictionary components (indexed horizontally)

and the number of grayordinates that each dictionary compo-

nent contains by counting the number of non-zero elements in

each row of a (vertical height). (e) and (f) show spatial distribu-

tion map on the cortical surface (highlighted by blue) and tem-

poral time series (blue curve) of two example dictionary

components, respectively. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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X is factorized into an overcomplete dictionary basis
matrix D5½d1; :::;dk� 2 Rt3k (Fig. 1c, k is the dictionary
component size) and a sparse coefficient weight matrix a5

½a1; :::; an� 2 Rk3n (Fig. 1c) via an effective online dictionary
learning algorithm [Mairal et al., 2010], in which the tfMRI
signal vector xi (i51,. . .n) in ith column of X is approxi-
mately modeled as xi5D3ai, where ai (i51,. . .n) is the ith
column of a. Specifically, each dictionary component can
be viewed as a functional network from brain science per-
spective, i.e., the time series vector di (i51,. . .k) in ith col-
umn of D represents the functional BOLD (blood-oxygen-
level dependent) activities of ith functional network (the
blue curves in Fig. 1e,f), while di’s corresponding sparse
coefficient weight vector ai (i51,. . .k) in ith row of a can
be mapped back to the cortical surface to obtain the corti-
cal spatial pattern of the functional network (Fig.1e,f). At
the conceptual level, the computational framework of
sparse representation can not only accurately and com-
pactly represent tfMRI signals, but also effectively identify
a comprehensive collection of functional networks whose
temporal (di) and spatial (ai) patterns can be quantitatively
assessed (as detailed in Identification of Functional Net-
works in Sparse Representation section).

We calculate D and a as follows. For sparse representa-
tion of signal matrix X 2 Rt3n, we aim to learn an effective
over-complete dictionary D 2 Rt3k which satisfies the con-
straint that k>t and k�n [Mairal et al., 2010]. Specifically,
the empirical cost function fnðDÞ of X 2 Rt3n considering
the average loss of regression to all n signal vectors using
D is

fnðDÞ5
1

n

Xn

i51

‘ xi;Dð Þ5 1

n

Xn

i51

min
ai2Rk

1

2
|xi2Dai|

2
21k|ai|1 (1)

where the loss function ‘ x;Dð Þ is defined as the optimal
value of sparse representation: ‘ x;Dð Þ5 mina2Rk

1
2

|x2Da|2
21k|a|1. Note that the value of ‘ x;Dð Þ should be

small if signal x is reasonably well sparse represented by
D. The l1 regularization is used to yield a sparse resolution
of a. k is a regularization parameter between regression
residual and sparsity level. Moreover, we have the con-
straint to prevent the elements in D from being arbitrarily
large,

C5 fD 2 Rt3ks:t:8i51; ::k;dT
i di � 1

� �
g (2)

So the problem of minimizing Eq. (1) is rewritten as a
matrix factorization problem:

min
D2C;a2Rk3n

1

2
|X2Da|2

F1k|a|1;1 (3)

We adopt the effective online dictionary learning algo-
rithm and the associated publicly released online diction-
ary learning toolbox [Mairal et al., 2010] to solve Eq. (3)
and to learn the dictionary D. We briefly demonstrate the
online dictionary learning approaches to solve Eq. (3) as

follows. The core idea is that the two variables D and a in
Eq. (3) are alternated and minimized over one while keep-
ing the other one fixed. Specifically, we define signal train-
ing set as samples of a distribution p xð Þ. Dm is defined as
the updated dictionary at the iteration time m. D0 is the
initial dictionary and is randomly initialized from x. At
the number of iterations m, for one element xm drawn
from p xð Þ at a time in stochastic gradient descent, the least
angle regression (LARS)-Lasso algorithm [Mairal et al.,
2010] is used to compute the decomposition am of xm

based on the dictionary Dm21 obtained at the previous
iteration m21. At the same time, the dictionary Dm21 is
updated as Dm by minimizing over Eq. (2) the function in
Eq. (1), where am is computed during previous step. The
block-coordinate descent with warm starts algorithm is
used for dictionary update [Mairal et al., 2010]. It has been
proven that the iterations of dictionary update can achieve
convergence to learn an optimal D. More detailed equa-
tions and solutions of Eq. (3) are referred to [Mairal et al.,
2010]. Once D is learned and fixed in Eq. (3), the sparse
representation based on the learned D can be solved as an
l1-regularized linear least-squares problem to learn an
optimized a [Mairal et al., 2010]. We select the value of
regularization parameter k and dictionary size k via exper-
imental results based on the criterion of group-wise consis-
tency of the inferred functional components across
individual subjects [Lv et al., 2015a,b]. More details are in
the Supporting Information.

Identification of Functional Networks in Sparse

Representation

Once we perform dictionary learning and sparse repre-
sentation of tfMRI signals to obtain a collection of diction-
ary components for each subject in each task data, the next
step is to identify and quantitatively characterize the
meaningful functional networks (including both task-
evoked networks and intrinsic connectivity networks)
from the dictionary components as many as possible for
each subject in each task data based on current brain sci-
ence knowledge, and to seek their correspondences across
individual subjects. Specifically, we identify the task-
evoked networks from the dictionary components for each
subject in each tfMRI data as follows. After extensive vis-
ual inspection, it is found that certain networks (dictionary
components) have similar spatial and temporal patterns
compared with the activation maps derived from tradi-
tional general linear model (GLM) [Friston et al., 1994]
(Fig. 2 and Supporting Information Fig. 2). In this way, we
adopt the traditional GLM to perform task activation
detection on tfMRI data via FSL FEAT software. The
resulting activation maps under specific task contrast
designs as well as the input task contrast paradigm curves
in traditional GLM can be viewed as the references to
identify and characterize task-evoked networks in sparse
representation. Similar to the methods in [Lv et al.,
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2015a,b], for ith dictionary component, we not only mea-
sure the temporal similarity (defined as Pearson’s correla-
tion coefficient) between its temporal vector di (blue curve

in Fig. 2a,b) and each task contrast paradigm curve (black
curve in Fig. 2a,b), but also measure the spatial similarity
between its spatial pattern ai and the corresponding

Figure 2.

Identified task-evoked networks and ICNs in sparse representa-

tion of emotion tfMRI data. (a) Spatial and temporal patterns of

the three identified task-evoked networks based on sparse rep-

resentation compared with traditional GLM-derived activation

maps and task contrast paradigm curves in one example subject.

(b) Group-averaged spatial and temporal patterns of the three

identified task-evoked networks compared with group GLM-

derived activation maps and task contrast paradigm curves

across all subjects. (c) Spatial patterns of nine identified ICNs in

sparse representation compared with ICN templates in the

example subject. (d) Group-averaged spatial patterns of the nine

identified ICNs compared with ICN templates across all sub-

jects. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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activation map obtained by GLM (Fig. 2a). The spatial sim-
ilarity is defined as the spatial pattern overlap rate R
between the dictionary component’s spatial pattern (S)
and the GLM-derived activation map (T) on cortical
surface:

RðS;TÞ5 jS \ Tj
jTj (4)

Note that we firstly convert S and T from continuous
values to discrete labels (all values larger than 0 are
labeled as 1, and others are labeled as 0) and then calcu-
late the spatial overlap rate using Eq. (4). For each subject,
we select the top 10 candidate dictionary components
which have high spatial similarity with corresponding
GLM-derived activation map and have high temporal sim-
ilarity with corresponding task contrast paradigm curve,
respectively using the same methods in [Lv et al., 2015a,b].
Each component with high sum of value in spatial and
temporal similarity is further examined by a group of
seven experts separately to determine the final component
with the best match of both spatial and temporal patterns
with GLM based on the agreement reached by a voting
procedure of all experts. Moreover, for a specific task data,
we examine the group consistency of each identified
meaningful task-evoked network across all subjects by
comparing the spatial and temporal patterns between
group-averaged identified meaningful task-evoked net-
works and activation maps derived from group GLM (Fig.
2b), and only those consistent dictionary components
across subjects are retained as identified task-evoked net-
works in the specific task data. More details are in [Lv
et al., 2015a,b]. Our rationale is that since temporal and
spatial patterns provide crucial and complementary infor-
mation of functional BOLD activities and neuroanatomic
distributions of a functional network, respectively, each
identified meaningful task-evoked network in sparse rep-
resentation should have both high temporal similarity
with the task contrast paradigm curve and high spatial
similarity with the activation map obtained from tradi-
tional GLM [Lv et al., 2015a,b].

Moreover, we identify the intrinsic connectivity net-
works (ICNs) [Raichle, 2010; Seeley et al., 2007; Smith
et al., 2009; Lv et al., 2015a,b] from the dictionary compo-
nents for each subject in each task data as follows. We
measure the spatial similarity defined in Eq. (4) between
dictionary components and previously identified ICN tem-
plates (Fig. 2c) to determine the correspondence [Lv et al.,
2015b]. Specifically, ten previously well-defined ICNs
[Smith et al., 2009] are adopted as ICN templates in this
study. We select the top 10 candidate dictionary compo-
nents which have high spatial similarity with each ICN
template, respectively. Each component is further exam-
ined by a group of seven experts separately to determine
the final component with the best match of spatial pattern
and ICN template based on the agreement reached by a
voting procedure of all experts. Moreover, we examine the

group consistency of each identified ICN across all sub-
jects and all task data by comparing the spatial pattern
between group-averaged identified ICN and correspond-
ing ICN template (Fig. 2d), and only those consistent dic-
tionary components across subjects and across task data
are retained as identified ICNs. More details are in [Lv
et al., 2015a,b]. Our rationale is that each identified ICN in
sparse representation should have high spatial similarity
(overlap rate) with the corresponding previously identified
ICN template across different subjects.

It should be noted that since there is no quantitative or
effective interpretation of the comprehensive collection of
all dictionary components identified by sparse representa-
tion of tfMRI signals, we adopt the independent traditional
GLM-derived contrast maps and ICN templates as the
references to identify those similar meaningful functional
networks from the dictionary components [Lv et al.,
2015a,b], as well as to confirm that those meaningful func-
tional networks indeed “exist” in human brain no matter
what methods are adopted based on current brain science
knowledge. It should also be noted that in the future, all
of those hundreds of dictionary components (task-evoked
or intrinsic connectivity networks, or even noise and arti-
facts) should be identified with future understanding of
human brain function and development of other effective
methodology.

Identification of THFRs and Assessment of

Spatial Patterns on Gyri/Sulci

After performing sparse representation of tfMRI signals
and characterizing the meaningful functional networks, we
identify task-based heterogeneous functional regions
(THFRs) and assess their spatial patterns on cortical gyri/
sulci for each subject in each task data in this section. Spe-
cifically, since the dictionary components can be viewed as
functional networks and the ith column ai (i 5 1,. . .n) of a
represents the functional network composition of grayordi-
nate gi (i51,. . .n), we assess the number of involved func-
tional networks (dictionary components) of gi by counting
the number of non-zero elements in ai (|ai|0). THFR is
then defined as:

THFR58gis:t:|ai|0 > q (5)

In brief, THFR is composed of a collection of grayordi-
nate gi (i 5 1,. . .n) of which the number of non-zero ele-
ments (i.e., the number of involved functional networks)
in ai is larger than a threshold q. Note that since we define
q as the value of |ai|0 at the top p% across all grayordi-
nates, the value of q is determined once value of p% is
decided. The rationale of choosing value of p% is that p%
should be small enough to identify the THFRs from all
grayordinates, while p% should also not be too small to
identify merely isolated brain grayordinates instead of
continues THFR regions. We test different p% to examine
the spatial pattern consistency of identified THFRs which

r Functional Difference Between Gyri and Sulci r

r 5307 r



will be detailed in Spatial Patterns of THFRs on Cortical
Gyri and Sulci section. Note that we adopt a uniform p%
for all tfMRI data and subjects since the values of |ai|0

across all voxels/grayordinates are typically normally dis-
tributed with similar mean and standard deviation across
all subjects as illustrated in [Lv et al., 2015b] and Support-
ing Information Figure 1. It should also be noted that it is
likely that the identified THFRs contain specific artifact or
noise components which cannot be well quantitatively
characterized or modeled under current brain science
knowledge. However, the results in Results section will
show that the identified THFRs are indeed meaningful
and contain multiple identified functional networks.

After obtaining the spatial distribution of THFRs on
grayordinate cortical surfaces, the further spatial pattern
assessment of THFRs on gyri/sulci is straightforward. As
each grayordinate already has the gyri/sulci information
in each subject [Glasser et al., 2013], we could count the
number of involved grayordinates in THFRs on gyral and
sulcal regions respectively, then assess the ratio between
the percentage of involved grayordinates in THFRs on
gyri versus the percentage on sulci.

RESULTS

Identification of Meaningful Functional Networks

in Sparse Representation

We adopted the temporal/spatial similarity measure-
ment in Identification of Functional Networks in Sparse
Representation section to identify meaningful task-evoked
networks and ICNs from tfMRI data of each subject. In
total, we identified 3, 2, 2, 5, 2, 3, and 6 task-evoked net-
works from the datasets of emotion, gambling, language,
motor, relational, social, and working memory task,
respectively. The detailed description of the task-evoked
networks is in Supporting Information materials. Figure
2a,b show an example consisting of the three identified
task-evoked networks in emotion tfMRI data, while the
results from the other six tasks could be found in Support-
ing Information Figure 2. Specifically, Figure 2a shows the
three task-evoked networks in emotion tfMRI data of one
example subject. We can see that all three networks have

similar spatial patterns compared with corresponding
GLM-derived activation maps as well as similar temporal
patterns compared with the corresponding task contrast
paradigm curve. Quantitatively, the spatial overlap rate R
is 0.30, 0.33, and 0.29, and the temporal similarity is 0.38,
0.30, and 0.37 for the three networks in the example sub-
ject, respectively. Figure 2b shows the group-averaged spa-
tial maps and temporal curves of identified task-evoked
networks across all subjects in emotion task. Table I pro-
vides the spatial overlap rates and temporal similarity val-
ues of all group-averaged task-evoked networks in seven
tasks. Supporting Information Tables II and III provide the
spatial overlap rate and temporal similarity value of all
identified task-evoked networks in seven tasks across all
individual subjects. It is evident that all identified task-
evoked networks are consistent and have relatively high
spatial overlap rate and temporal similarity across
subjects.

Moreover, we identified nine ICNs in all subjects and in
all seven tasks. The detailed description of the nine ICNs
is in Supporting Information materials. Figure 2c shows
the spatial maps of the nine identified ICNs compared
with ICN templates [Smith et al., 2009] in the emotion task
of the example subject, while the results from the other six
tasks are shown in Supporting Information Figure 2.
Quantitatively, the spatial overlap rate is 0.34, 0.51, 0.37,
0.28, 0.27, 0.27, 0.23, 0.33, and 0.29 for the nine ICNs,
respectively. Figure 2d shows the group-averaged spatial
maps of identified ICNs in emotion data across all sub-
jects. Table II provides the spatial overlap rate of all
group-averaged ICNs. Supporting Information Table IV
provides the spatial overlap rate of all nine identified
ICNs in seven tasks across all subjects. We can see that all
identified ICNs are consistent and have relatively high
spatial overlap rate across tasks and subjects.

In summary, the identified task-evoked networks have
similar spatial patterns compared with the traditional
GLM-derived activation maps as well as similar temporal
patterns compared with the task contrast paradigm curve,
and the identified ICNs have similar spatial patterns with
ICNs templates across all subjects and tasks based on HCP
grayordinate tfMRI data, indicating that HCP grayordinate
tfMRI data is sufficient to represent the whole-brain tfMRI

TABLE I. Spatial overlap rate (S) and temporal similarity (T) of all identified group-averaged task-evoked networks

(N) comparing with group GLM-derived activation maps

Emotion Gambling Language Motor Relational Social WM

S T S T S T S T S T S T S T

N#1 0.84 0.63 0.97 0.42 0.95 0.46 0.95 0.62 0.90 0.44 0.97 0.54 0.94 0.51
N#2 0.92 0.55 0.95 0.23 0.86 0.55 0.95 0.58 0.92 0.43 0.94 0.62 0.89 0.47
N#3 0.79 0.68 0.94 0.56 0.94 0.69 0.98 0.59
N#4 0.83 0.62 0.94 0.46
N#5 0.94 0.57 0.90 0.47
N#6 0.92 0.61
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data (e.g., in volumetric space), to reflect whole-brain func-
tional activities, and to identify meaningful whole-brain
functional networks [Barch et al., 2013; Smith et al., 2013],
which is also the premise to explore functional architecture
of cortical gyri and sulci based on HCP grayordinate data
in this article.

Identification of THFRs in Single Task and

Multiple Tasks

We identified task-based heterogeneous functional
regions (THFRs) in each single task. Figure 3 shows the
distribution density map of identified THFRs across sub-
jects in each single task. In brief, since the grayordinates
have correspondence across all subjects, for each task, we
combine the distribution map of identified THFRs of all
subjects together by counting the number of each grayor-
dinate in the THFRs of all subjects, and calculating the
mean number of each grayordinate in the THFRs to obtain
the distribution density map of identified THFRs across
subjects. We see that THFRs have higher distribution den-
sity at the bilateral parietal lobe, frontal lobe, and visual
association cortices within each single task. Moreover,
such high distribution density pattern is relatively consist-
ent across seven tasks (as highlighted by the red arrows in
Fig. 3). These findings are also consistent across all indi-
vidual subjects. More individual examples are shown in
Supporting Information Figures 3 and 4.

Moreover, we identified THFRs across multiple tasks for
each subject. Figure 4 shows the distribution density map
of identified THFRs of all subjects across multiple tasks (at
least three to seven tasks), respectively. In brief, since the
grayordinates have correspondence across all subjects, for
each situation (across three to seven tasks), we combine
the distribution map of identified THFRs of all subjects
together by counting the number of each grayordinate in
the THFRs of all subjects, and calculating the mean num-
ber of each grayordinate in the THFRs to obtain the distri-
bution density map of identified THFRs across all subjects.
Interestingly, the THFRs also have higher distribution den-
sity at the bilateral parietal lobe, frontal lobe, and visual

TABLE II. Spatial overlap rates of all identified group-averaged ICNs

Emotion Gambling Language Motor Relational Social WM

ICN#1 0.70 0.88 0.99 0.98 0.84 0.97 0.90
ICN#2 0.96 0.94 0.98 0.97 0.97 0.97 0.96
ICN#3 0.79 0.91 0.97 0.94 0.84 0.95 0.87
ICN#4 0.69 0.79 0.86 0.85 0.75 0.84 0.71
ICN#5 0.52 0.86 0.91 0.93 0.81 0.92 0.75
ICN#6 0.44 0.85 0.92 0.93 0.81 0.92 0.72
ICN#7 0.45 0.67 0.79 0.74 0.62 0.76 0.62
ICN#8 0.69 0.90 0.97 0.92 0.84 0.91 0.81
ICN#9 0.64 0.89 0.95 0.93 0.84 0.92 0.82

Figure 3.

Distribution density map of identified THFRs across all subjects

in each of the seven tfMRI data. Those THFRs with higher distri-

bution density and relatively consistent across seven tasks are

highlighted by red arrows. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

r Functional Difference Between Gyri and Sulci r

r 5309 r

http://wileyonlinelibrary.com


association cortices. Moreover, the higher distribution den-
sity pattern is relatively consistent across from at least three
tasks to at least seven tasks (as highlighted by red arrows in
Fig. 4) as those in single task (Fig. 3). These findings are
also consistent across all subjects. More individual exam-
ples are shown in Supporting Information Figures 5 and 6.

We quantitatively characterized the identified THFRs via
two measurements. First, Figure 5a,c shows the network
histograms (by counting the number of involved dictionary
components (functional networks)) after normalization to
the sum of 1 in THFRs and task-evoked networks of the
example subject in emotion data, respectively. We can see
that the histogram of THFRs (Fig. 5a) is complex and dis-
tributed across all components, while the histogram of task-
evoked networks highly concentrates on the specific com-
ponents (highlighted by black in Fig. 5c), as expected. More
results are in Supporting Information Figure 7. Quantita-
tively, the network histogram concentration (defined as
summing the percentage of top three components in the
histogram) is 1.22% and 8.11% for THFRs and task-evoked
networks in the example subject in emotion data, respec-
tively. Table III provides the histogram concentration of
THFRs and task-evoked networks in all seven tasks across

all subjects. We can see that the histogram concentration
value of THFRs is statistically significantly smaller than
that of task-evoked networks (P < 0.05) across all seven
tasks and subjects by using paired t-test. Moreover, the net-
work histogram entropy (defined as the entropy of all histo-
gram elements [Lv et al., 2015b]) is 8.62 and 8.34 for THFRs
and task-evoked networks in the example subject in emo-
tion data, respectively. Table IV shows the histogram
entropy of THFRs and task-evoked networks in all seven
tasks across all subjects. We can see that the histogram
entropy of THFRs is statistically significantly larger than
that of task-evoked networks (P < 0.05) across all seven
tasks and subjects by using paired t-test. Second, we exam-
ined the temporal patterns of THFRs and compared with
those of task-evoked networks within the same subject. As
shown in Figure 5b, the temporal patterns of all THFRs as
well as two example components (R4 and R5) in THFRs of
the example subject in emotion data are complex and have
much less similarity with the task contrast paradigm
curves, while the temporal patterns of the top three compo-
nents in the histogram of task-evoked networks have high
similarity with the task contrast paradigm curves (Fig. 5d).
Quantitatively, the mean temporal similarity for the tempo-
ral pattern of all THFRs and two example components (R4
and R5) is only 0.01, 20.06, and 0.01 compared with the
three task contrast paradigm curves, respectively, while
0.38, 0.30, and 0.37 for the top three components in the his-
togram of task-evoked networks in the same subject,
respectively.

We further justified the identified THFRs from two per-
spectives. First, Figures 3 and 4 and Supporting Information
Figures 3 to 6 have illustrated that the spatial distributions
of identified THFRs are reasonably consistent (bilateral
parietal lobe, frontal lobe, and visual association cortices)
across all subjects and tasks, and in agreement with current
neuroscience knowledge [Anzai et al., 2007; Duncan, 2010;
Fedorenko et al., 2013], where it has been reported that the
frontal and parietal lobes have multiple-demand patterns
associated with diverse cognitive demands [Duncan, 2010;
Fedorenko et al., 2013], and that visual association cortices
is a heterogeneous collection of visual areas and is involved
in higher level of processing, e.g., responding to visual
stimuli which have complex pattern or structure [Anzai
et al., 2007]. This group-wise consistency and coincidence
with current neuroscience knowledge is a reasonable verifi-
cation of identified THFRs as reliable patterns which can be
adopted for further investigation such as network dynam-
ics, given the lack of ground-truth in brain mapping.

Second, as shown in Figure 5a, the components that are
identified as task-evoked networks (N1, N2, and N3) and
ICNs (R1 to R9) all have relative high percentage in the
histogram of THFRs (highlighted by black in Fig. 5a) in
the example subject, indicating that THFRs not only
indeed involve functional networks (both task-evoked net-
works and ICNs), but also involve specific regions that are
participated in the task contrast paradigm (N1, N2, and

Figure 4.

Distribution density map of identified THFRs of all subjects

across multiple tasks (at least three of seven tasks in HCP data

(emotion, gambling, language, motor, relational, social, and work-

ing memory)). Those THFRs with higher distribution density and

relatively consistent across multiple tasks are highlighted by red

arrows. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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N3). However, those regions with complex temporal pat-
tern due to the complex network composition (Fig. 5a) of
THFRs may have been underestimated by traditional
approaches which merely consider individual tfMRI sig-
nals based on model-driven subtraction procedures [Lv
et al., 2015a,b]. Those regions that were identified by our
approach but were not by traditional approaches can be
further investigated in the future, which is another
research topic besides this article.

Spatial Patterns of THFRs on Cortical Gyri and

Sulci

We have shown the spatial distribution of THFRs on the
cortical surface in each single task (Fig. 3) and across mul-

tiple tasks (Fig. 4). In this section, we further investigate
how the THFRs are distributed over gyri/sulci. First, we
assessed the spatial patterns of identified THFRs in each
single task as illustrated in Figure 3 on cortical gyri and
sulci. Figure 6a shows the segmented gyri and sulci of one
example subject which is provided in HCP grayordinate
data [Glasser et al., 2013]. Figure 6b,c show the spatial dis-
tributions of THFRs on gyri and sulci of the example sub-
ject in emotion task data, respectively. More examples are
shown in Supporting Information Figure 8. Figure 6d
shows the percentage of involved grayordinates in THFRs
on gyri and sulci across all seven tasks in the example
subject. More subjects are shown in Figure 7. Figure 6e
shows the mean percentage of involved grayordinates in
THFRs on gyri and sulci in all seven tasks. We can see

Figure 5.

Network histogram and temporal pattern comparisons between

THFRs and task-evoked networks. (a) Network histogram (red)

after normalization to the sum of 1 in THFRs of an example

subject in emotion data. (b) Mean temporal pattern of identified

THFRs (red) and temporal patterns of two example components

identified as ICN #4 and ICN #5 in Figure 2 (R4 and R5). The

task contrast paradigm curve is shown in black. (c) Network

histogram (blue) after normalization to the sum of 1 in task-

evoked networks of an example subject in emotion data. Here

the task-evoked networks are the union of three identified task-

evoked networks. (d) Temporal patterns of three components

identified as task-evoked networks in Figure 2 (N1, N2, and

N3). The task contrast paradigm curve is shown in black. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

TABLE III. Network histogram concentration of THFRs and task-evoked networks (%) in seven tasks across all

subjects

Emotion Gambling Language Motor Relational Social WM

THFRs 1.44 6 0.17 1.35 6 0.16 1.26 6 0.11 1.31 6 0.15 1.42 6 0.20 1.38 6 0.16 1.19 6 0.09
Task-evoked 7.20 6 1.38 4.16 6 0.55 3.06 6 0.14 4.77 6 0.89 4.75 6 0.75 4.27 6 0.53 3.50 6 0.44
P 3.53E-42 9.04E-46 1.45E-64 1.15E-39 1.17E-43 2.19E-47 2.94E-48
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that the mean percentage of involved grayordinates in
THFRs on gyri is consistently larger than that on sulci in
all seven tasks and all subjects. Moreover, we calculated

the ratio of percentage of involved grayordinates in THFRs
on gyri versus that on sulci across all subjects and tasks.
Table V provides the mean ratio of percentage of involved

TABLE IV. Network histogram entropy of THFRs and task-evoked networks in seven tasks across all subjects

Emotion Gambling Language Motor Relational Social WM

THFRs 8.61 6 0.01 8.62 6 0.01 8.62 6 0.00 8.62 6 0.01 8.61 6 0.01 8.62 6 0.01 8.63 6 0.00
Task-evoked 8.41 6 0.07 8.56 6 0.02 8.60 6 0.01 8.52 6 0.05 8.52 6 0.03 8.56 6 0.02 8.56 6 0.03
p-value 6.28E-32 1.89E-31 6.74E-35 8.68E-24 5.86E-29 3.87E-32 3.18E-28

The value is represented as mean 6 standard deviation. Bold values indicate P values smaller than 0.05.

Figure 6.

Spatial patterns of THFRs in single task on gyri/sulci and the per-

centages of involved grayordinates in THFRs in single task on

gyri/sulci. (a) Segmented gyri and sulci of one example subject.

(b) and (c) Spatial patterns of THFRs (red) on gyri (b) and sulci

(c) in emotion task data of the example subject, respectively. (d)

Percentages of involved grayordinates in THFRs on gyri/sulci in

the example subject in all seven tasks. (e) Mean percentages of

involved grayordinates in THFRs on gyri/sulci across all subjects

in all seven tasks (E: emotion; G: gambling; L: language; M:

motor; R: relational; S: social; W: working memory). [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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grayordinates in THFRs on gyri versus that on sulci in
seven tasks. We can see that the percentage of involved
grayordinates in THFRs on gyri is statistically significantly
larger than that on sulci (P < 0.05) across all subjects in all
seven tasks by using paired t-test. The mean ratio of per-
centage of involved grayordinates in THFRs on gyri versus

that on sulci is 2.22, 3.14, 2.63, 2.95, 3.38, 2.50, and 2.76 in
seven tasks, respectively. Supporting Information Table V
provides the ratio of percentage of involved grayordinates
in THFRs on gyri versus that on sulci in individual sub-
jects. Supporting Information Tables VI and VII provide
mean ratio and statistical significance of percentage of

Figure 7.

Percentages of involved grayordinates in THFRs in single task on gyri/sulci of another six subjects

indexed by (a) to (f), respectively. (E: emotion; G: gambling; L: language; M: motor; R: relational;

S: social; W: working memory). [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

TABLE V. Mean ratio of percentage of involved grayordinates in THFRs on gyri versus that on sulci across all sub-

jects in seven tasks

Emotion Gambling Language Motor Rational Social WM

Ratio 2.22 6 1.09 3.14 6 3.87 2.63 6 2.07 2.95 6 2.47 3.38 6 4.29 2.50 6 1.32 2.76 6 1.59
P 9.48E-22 9.60E-19 2.98E-20 1.56E-19 1.49E-17 8.25E-22 8.29E-22
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involved grayordinates in THFRs on gyri versus that on
sulci across all subjects in seven tasks using different
threshold p% when identifying THFRs (Eq. (5)). We can

see that the percentage of involved grayordinates in
THFRs on gyri is consistently significantly larger than that
on sulci under different threshold p%, indicating the

Figure 8.

Spatial patterns of THFRs on gyri/sulci in multiple tasks and the

percentages of involved grayordinates in THFRs in multiple tasks

on gyri/sulci. (a) Segmented gyri and sulci of one example sub-

ject. (b) and (c): Spatial patterns of THFRs (red) on gyri (b) and

sulci (c) across at least four tasks of the example subject,

respectively. (d) Percentages of involved grayordinates in THFRs

on gyri/sulci in the example subject across at least three tasks.

(e) Mean percentages of involved grayordinates in THFRs on

gyri/sulci across at least three tasks across all subjects. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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stability of our findings when choosing p% in a reasonable
range.

Moreover, we assessed the spatial patterns of identified
THFRs across multiple tasks (Fig. 4) on cortical gyri and
sulci. Figure 8a shows the segmented gyri and sulci of the
example subject which is provided in HCP grayordinate
data [Glasser et al., 2013]. Figure 8b,c show the spatial pat-
terns of THFRs on gyri/sulci of one example subject across
at least four tasks. More examples are shown in Support-
ing Information Figure 9. Figure 8d shows the percentage
of involved grayordinates in THFRs on gyri and sulci
across at least three to seven tasks in the example subject.
More examples are shown in Figure 9. Figure 8e shows
the mean percentage of involved grayordinates in THFRs

across multiple tasks on gyri and sulci across all subjects.
It can be seen that the percentage of involved grayordi-
nates in THFRs across multiple tasks on gyri is consis-
tently larger than that on sulci. We further calculated the
ratio of percentage of involved grayordinates in THFRs on
gyri versus that on sulci for all subjects. Table VI provides
the mean ratio of percentage of involved grayordinates in
THFRs on gyri versus that on sulci across all subjects. We
can see that the percentage of involved grayordinates in
THFRs across multiple tasks on gyri is statistically signifi-
cantly larger than that on sulci (P < 0.05) across all sub-
jects by using paired t-test. Moreover, the more tasks are
involved, the larger the mean ratio of percentage of
involved grayordinates in THFRs on gyri versus that on

Figure 9.

Percentages of involved grayordinates in THFRs across multiple tasks on gyri/sulci of another six

subjects indexed by (a)–(f), respectively. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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sulci is (except for six tasks and seven tasks). Supporting
Information Table VIII shows the ratio of percentage of
involved grayordinates in THFRs across multiple tasks on
gyri versus that on sulci in individual subjects.

THFRs Distribution Difference Between Cortical

Gyri and Sulci is not due to Signal-to-Noise Dif-

ference in High-Resolution FMRI

When acquiring fMRI data at high resolution (2 mm iso-
tropic voxels in this article or below), there can be a time
series signal to noise ratio (tSNR) difference between dif-
ferent portions of cortex [Kruger and Glover, 2001; Weiner
and Grill-Spector, 2010]. To examine whether the identified
THFRs distribution difference between cortical gyri and
sulci is merely due to the possible tSNR difference
between cortical gyral and sulcal regions in high-
resolution fMRI data, we measured the tSNR of each
involved grayordinate in the identified THFRs. Specifi-

cally, for each grayordinate involved in the THFRs as the
center, we obtained its three-ring [about 5 mm radius,
Weiner and Grill-Spector, 2010] neighborhood grayordi-
nates on the cortical mesh surface. We then extracted the
fMRI time series of all grayordinates within the three-ring
and calculated the tSNR of the centered grayordinate as
follows [Weiner and Grill-Spector, 2010]:

tSNR5
meanðtimeseriesÞ

stdðtimeseriesÞ (6)

Figure 10b shows the tSNR map of the THFRs on gyri and
sulci in emotion task data of the same example subject in
Figure 6b,c, respectively. We further calculated the mean
tSNR of involved grayordinates in THFRs on gyri/sulci
across all subjects in all seven tasks. As shown in Figure 10c,
we see that the tSNR of THFRs on sulci has larger mean
value while also larger standard deviation compared with
that on gyri. We further examined if there is statistical tSNR
difference of THFRs between gyri and sulci via unpaired
two-sample t-test (P < 0.01). The results showed that the
mean values of tSNR of gyri and sulci are statistically equal
across all subjects in all seven tasks. In conclusion, the iden-
tified THFRs distribution difference between cortical gyri
and sulci is not a result of the possible tSNR difference in
high-resolution fMRI data, and might truly reveal novel
functional architecture of cortical gyri and sulci.

DISCUSSION AND CONCLUSION

We proposed a data-driven sparse representation frame-
work on HCP grayordinate-based whole-brain tfMRI

Figure 10.

tSNR measurement: THFRs distribution difference between gyri

and sulci is not due to SNR difference. (a) Segmented gyri and

sulci of the same example subject in Figure 6a. (b) tSNR map of

the THFRs on gyri and sulci in emotion task data of the same

example subject in Figure 6b,c, respectively. (c) Mean tSNR of

involved grayordinates in THFRs on gyri/sulci across all subjects

in all seven tasks (E: emotion; G: gambling; L: language; M:

motor; R: relational; S: social; W: working memory). [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

TABLE VI. Mean ratio of percentage of involved grayor-

dinates in THFRs across multiple tasks on gyri versus

that on sulci across all subjects

Three
tasks

Four
tasks

Five
tasks

Six
tasks

Seven
tasks

Ratio 1.31 6 0.16 1.66 6 0.29 2.22 6 0.64 3.33 6 1.67 2.53 6 1.05
P 2.68E-26 2.93E-34 3.30E-35 2.00E-35 2.04E-27

The ratio is represented as mean 6 standard deviation. Bold val-
ues indicate P values smaller than 0.05.
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signals to systematically identify and characterize the task-
based heterogeneous functional regions in specific task
performances and to assess their spatial pattern distribu-
tion difference on cortical gyri and sulci. Our results have
shown that both consistent meaningful task-evoked net-
works and ICNs were effectively and robustly recon-
structed simultaneously across all subjects and seven tasks
in HCP grayordinate tfMRI datasets via our proposed
computational framework. Our results have also shown
that the identified THFRs (involving the identified task-
evoked networks and ICNs) relatively consistently locate
at the bilateral parietal lobe, frontal lobe, and visual associ-
ation cortices across all subjects in both single task and
across multiple tasks.

Our results finally have shown that the identified
THFRs locate statistically significantly more on cortical
gyral regions than on cortical sulcal regions across all sub-
jects and tasks. Particularly, this THFRs distribution differ-
ence between gyri and sulci is not due to signal-to-noise
difference in HCP high-resolution fMRI. This finding sug-
gests that cortical gyri might participate more in multiple
and heterogeneous functional processes than sulci in spe-
cific task performances, and might be consistent with our
previous study based on resting state fMRI data demon-
strating that gyri are global functional connection centers
and sulci are local functional units [Deng et al., 2014]. As
demonstrated in Introduction, there have been several
findings reporting the structural/functional differences
between gyri and sulci [Chen et al., 2013; Deng et al., 2014;
Nie et al., 2012; Takahashi et al., 2012; Zeng et al., 2015;
Zhang et al., 2014]. For the first time (as far as we know),
we demonstrated the functional difference during a spe-
cific task performance (i.e., THFRs distribution difference)
between gyri and sulci in this article. These results
revealed novel functional architecture of cortical gyri and
sulci, and might help better understand functional mecha-
nisms of the human cerebral cortex in the future.

It has been demonstrated that ICA for brain fMRI does
truly recover maximal independence components, while
practically it also possibly recovers overlapped compo-
nents for brain fMRI like sparse representation method
[Daubechies et al., 2009]. It has been demonstrated that
sparse representation of whole brain fMRI signals is supe-
rior to ICA or GLM methods in reconstructing concurrent
brain networks [Lv et al., 2015a,b]. Though sparse repre-
sentation of fMRI signals has been relatively less studied
in the field, it is worthwhile in this work to employ sparse
representation of whole-brain grayordinate-based fMRI
signals to systematically examine and characterize task-
based heterogeneous functional regions (THFRs) on corti-
cal surface. Our experimental results have demonstrated
meaningful results and several advantages, suggesting the
value of this work.

More specifically, in this article, we adopt independent
traditional GLM-derived contrast maps and ICN templates
as the references to identify and characterize similar task-

evoked and ICN networks in sparse representation. Simi-
lar ideas have also been used in ICA literature. It is help-
ful at current stage since these GLM-derived maps and
ICN templates reflect our current neuroscience knowledge
and common practice. The identified meaningful func-
tional networks in sparse representation similar as GLM-
derived contrast maps and ICN templates confirm that
those meaningful functional networks indeed “exist” in
the human brain no matter what different methods are
adopted based on current brain science knowledge. For
the identified THFRs shown in Figures 6 and 8b,c, we
have verified that these THFRs are reasonably consistent
across all subjects and tasks, and in agreement with cur-
rent neuroscience knowledge (see details in Identification
of THFRs in Single Task and Multiple Tasks section). This
group-wise consistency and coincidence with current neu-
roscience knowledge is a reasonable verification of the
identified THFRs in Figures 6 and 8b,c as reliable and
meaningful sparse patterns.

Moreover, our recent work [Lv et al., 2015b] has success-
fully identified 32 group-wise consistent functional net-
work components across individual subjects in sparse
representation. They are independent of any other meth-
ods such as GLM and ICN templates. These group-wise
consistent network components can be adopted as func-
tional network templates to define existing functional net-
works. These results indicate that sparse representation is
not only a good method for characterizing the low-
dimensional structure of tfMRI data, but also a good
method for identifying the network structure of tfMRI
data. Our ongoing effort is to learn more functional net-
works templates in sparse representation from large popu-
lations using big-data approaches to define a large space
of existing functional networks in the future.

In general, this study can be enhanced in the future in
following aspects. First, all of those dictionary components
derived from sparse representation should be quantita-
tively characterized and modeled with future understand-
ing of human brain function and development of other
effective methodology to warrant assessment of the func-
tional network distribution and/or removal of artifacts/
noise in THFRs. Second, we can extend the THFRs spatial
pattern assessment on cortical gyri/sulci to subcortical
gyral/sulcal regions if effective methods are developed to
perform cerebellum segmentation and cerebellar surface
reconstruction with the high-resolution HCP datasets in
the future [Glasser et al., 2013]. Third, in this article, we
identified and reported the spatial distributions of those
relatively consistent THFRs across subjects and tasks in
coarse-scale, i.e., roughly locate on bilateral parietal lobe,
frontal lobe, and visual association cortices. In the future,
we can perform a finer scale assessment of THFRs spatial
distributions and patterns on gyri/sulci by adopting our
recently developed Anatomy-guided Dense Individualized
and Common Connectivity-based Cortical Landmark (A-
DICCCOL) system [Jiang et al., 2015] which discovered
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555 consistent cortical landmarks which have gyral/sulcal
and structural (fiber connection pattern) correspondences
across different subjects. In this way, the spatial distribu-
tions of the relatively consistent THFRs across subjects and
tasks can be identified and reported at the cortical gyral/
sulcal landmark scale. We can also correlate the spatial
distribution of identified THFRs with other attributes (e.g.,
fiber density, cortical thickness, etc.) to explore the regular-
ity and variability between the human brain structure and
function.
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